自回归模型在枯季径流模拟预测中的应用
Application of Autoregressive Model for Low Flow Prediction

作者: 林炳东 * , 夏丽珍 :温州市水文站; 解河海 :珠江水利科学研究院;

关键词: 枯季径流时间序列自回归模型水文预测Low Flow Time Series Autoregressive Model Hydrological Prediction

摘要: 枯季水文径流预测是现在水文预测预报的一个重要组成部分,随着社会经济发展和人口增加,水资源问题越来越突出,因此开展枯季水文径流模拟预测为准确把握流域枯季水资源水量和水文过程提供了依据。西江流域是珠江水系的第一大支流,近年来由于径流量减少,特别是枯季径流变化较大,珠江三角洲河口咸潮上溯年年发生,影响区域生产生活,因此有必要开展枯季径流模拟预测研究。自回归模型是一种基于时间序列的预测预报方法,为了研究模型在此区域枯季径流模拟预测的适用性,采用自回归模型对贵港站日平均流量进行研究与分析,所率定的自回归阶数p,经验证是合适的,模拟预测结果表明:洪峰相对误差小于20%,径流深相对误差小于5%,确定性系数值大于0.75,精度较好。说明自回归模型在贵港水文站枯季径流模拟预测中是适用的。

Abstract: The water resources problem becomes increasingly prominent due to the development of socio- economic and population growth. Low flow prediction is becoming important since it can provide based evidence for the water resources quantity and hydrological processes in dry-season. The estuarine salt tide in the Pearl River Delta traced occurs every year due to the reduction of runoff, which affects the regional production and life. The autoregressive model is used to simulate and predict daily average flow at Guigang hydrologic station. The self-regression order parameter of p is obtained and tested. Results show that the relative difference of peak flow is less than 20%, the relative error of runoff depth is less than 5%, and the uncertainty coefficient value is greater than 0.75. This shows that the auto-regressive model is applicable for the low flow simulation and prediction in the Guigang hydrological station.

文章引用: 林炳东 , 夏丽珍 , 解河海 (2013) 自回归模型在枯季径流模拟预测中的应用。 水资源研究, 2, 222-227. doi: 10.12677/JWRR.2013.23031

参考文献

[1] RIGGS, H. C. A method of forecasting low-flow of streams. Transactions American Geophysical Union, 1953, 34(3): 427- 434.

[2] 赵人俊. 枯水[J]. 地理知识, 1959, 1: 40-41. ZHAO, Renjun. Low flow. Geography Knowledge, 1959, 1: 40- 41. (in Chinese)

[3] 李秀云, 汤奇成, 傅肃性, 等. 中国河流的枯水研究[M]. 北京: 海洋出版社, 1993: 5-10, 33-34. LI Xiuyun, TANG Qicheng, FU Suxing, et al. Research of low flow in China. Beijing: Ocean Press, 1993: 5-10, 33-34. (in Chi-nese)

[4] 李秀云, 傅肃性, 李丽娟, 等. 河流枯水极值分析与模型预测研究[J]. 资源科学, 2000, 22(5): 74-77. LI Xiuyun, FU Suxing, LI Lijuan, et al. Analysis of river low flow extremes and study on model prediction. Resources Science, 2000, 22(5): 74-77. (in Chinese)

[5] 黎坤, 江涛, 刘德地, 等. 北江天然径流量的变化特征及其影响因素[J]. 水文, 2005, 25(3): 20-25. LI Kun, JIANG Tao, LIU Dedi, et al. Analysis of the natural runoff changing characteristics and concerned influencing factors in Beijiang river basin. Hydrology, 2005, 25(3): 20-25. (in Chi-nese)

[6] 殷福才, 王在高, 梁红. 枯水研究进展[J]. 水科学进展, 2004, 2: 249-253. YIN Fucai, WANG Zaigao and LIANG Hong. Advances in low flow research. Advances in Water Science, 2004, 2: 249-253. (in Chi-nese)

[7] 王萍, 毛革. 珠江流域的枯水研究与展望[J]. 水文, 2008, 3: 65-66. WANG Ping, MAO Ge. Advances in low flow research of Peal River. Hydrology, 2008, 3: 65-66. (in Chinese)

[8] 黄国如, 陈永勤. 枯水径流若干问题研究进展[J]. 水电能源科学, 2005, 23(4): 61-63. HUANG Guoru, CHEN Yongqin. Review of some problems about low runoff. Hydroelectric Energy Science, 2005, 23(4): 61-63. (in Chinese)

[9] 朱俊林, 余汉章. 枯水径流的序列分析和预测[J]. 湖北大学学报(自然科学版), 1996, 18(2): 190-193. ZHU Junlin, YU Hanzhang. Analysis and prediction of low flow time series. Journal of Hubei University (Natural Science Edition), 1996, 18(2): 190-193. (in Chinese)

[10] 汤奇成, 李秀云. 西北干旱地区枯水径流的自回归相关初步分析[J]. 自然资源学报, 1987, 2: 25-132. TANG Qicheng, LI Xiuyun. The preliminary analysis on the auto regression correlation coefficient of dry-season runoff in arid region, northwestern China. Journal of Natural Resources, 1987, 2: 125-132. (in Chinese)

[11] 冯国章, 王双银, 韦华艳. 多元自回归模型在枯水径流预报中的应用[J]. 自然资源学报, 1996, 11(2): 184-186. FENG Huozhang, WANG Shuangyin and WEI Huayan. Application of the multivariate auto regression model to low flow forecast. Journal of Natural Resources, 1996, 11(2): 184-186. (in Chinese)

[12] 黄国如, 陈永勤, 解河海. 东江流域枯水径流的频率分析[J]. 清华大学学报(自然科学版), 2005, 45(12): 1633-1635. HUANG Guoru, CHEN Yongqin and XIE Hehai. Low flow fre-quency analysis in Dongjiang basin. Journal of Tsinghua Uni-versity (Science and Technology), 2005, 45(12): 1633-1635. (in Chinese)

[13] AKAIKE, H. Fitting autoregressive models for prediction. The Annals of Mathematical Statistics, 1969, 21(1): 243-247.

分享
Top