声学超材料研究进展
The Research Progress of Acoustic Metamaterials

作者: 刘红星 * , 吴九汇 , 张思文 * , 沈礼 :西安交通大学机械工程学院;

关键词: 声学超材料等效质量密度等效模量局域共振 Acoustic Metamaterials Effective Mass Density Effective Modulus Local Resonance

摘要:

声学超材料是人工制造的一种复合结构。由于它结构尺寸单元远小于声波波长,具有很多自然材料所不具备的特殊性质,极大地扩展了声学材料的内涵及其应用领域。文章介绍了近年来声学超材料的主要研究进展,包括负等效声学参数(负等效质量密度及负等效模量)超材料及隐身超材料的实现方法及思路,并对声学超材料的研究做了总结和展望。

Abstract: Acoustic metamaterials are artificially fabricated materials. Because their structural unit sizes are smaller than the acoustic wavelength, they exhibit exotic characteristics beyond those found in nature, which expand acoustic materials and their application fields. In this article, the main advances in the research of acoustic metamaterials are reviewed, including the realization of negative effective acoustic parameters which provide possibilities to research the special nature of the acoustics. An overview is given for the development of the acoustic cloak, and discusses the possible development of acoustic metamaterials.

文章引用: 刘红星 , 吴九汇 , 张思文 , 沈礼 (2013) 声学超材料研究进展。 声学与振动, 1, 7-13. doi: 10.12677/ojav.2013.12002

参考文献

[1] J. B. Pendry. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85: 3966-3969.

[2] D. Smith, J. B. Pendry and M. C. K. Wiltshire. Metamaterials and negative refractive index. Science, 2004, 305(5685): 788- 792.

[3] 祝雪丰, 梁彬, 程建春. 声超常材料与声隐身斗篷[J]. 现代物理知识, 2012, 24(2): 40-46.

[4] J. B. Pendry, J. A. Holden, J. D. Robbins, et al. Low frequency plasmons in thin-wire structures. Journal of Physics: Condensed Matter, 1998, 10: 4785.

[5] J. B. Pendry, J. A. Holden, J. D. Robbins, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transac- tions on Microwave Theory and Techniques, 1999, 47: 2075- 2084.

[6] 柯满竹, 邱春印, 彭莎莎, 刘正猷. 声学超构材料[J]. 物理, 2012, 41(10): 663-668.

[7] J. H. Page, P. Sheng, H. P. Schriemer, et al. Group velocity in strongly scattering media. Science, 1996, 271: 634.

[8] Z. Y. Liu, X. X. Zhang, Y. W. Mao, et al. Locally resonant sonic materials. Science, 2000, 289: 1734.

[9] Z. Y. Liu, C. T. Chan and P. Sheng. Analytic model of phononic crystals with local resonances. Physical Review B, 2005, 71: 014103.

[10] Z. Yang, J. Mei, M. Yang, et al. Membran-type acoustic meta- material with negative dynamic mass. Physical Review Letters, 2008, 101: 204301.

[11] 梅军, 杨旻, 杨志宇等. 薄膜型负质量密度声学超常介质[J]. 物理, 2010, 39(4): 243-247.

[12] J. Mei, G. C. Ma, M. Yang, et al. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nature Communica- tions, 2012, 3: 756.

[13] X. N. Liu, G. K. Hu, G. L. Huang, et al. An elastic metamaterial with simultaneously negative mass density and bulk modulus. Physical Review Letters, 2011, 98: 251907.

[14] X. H. Hu, K.-M. Ho. Homogenization of acoustic metamaterials of Helmholtz resonators in fluid. Physical Review B, 2008, 77: 172301.

[15] N. Fang, D. J. Xi, J. Y. Xu, et al. Ultrasonic metamaterials with negative modulus. Nature Materials, 2006, 5: 452-456.

[16] Y. Cheng, J. Y. Xu and X. J. Liu. Broad forbidden bands in par- allel-coupled locally resonant ultrasonic metamaterials. Applied Physics Letters, 2008, 92: 051913.

[17] J. Li, C. T. Chan. Double-negative acoustic metamaterial. Phy- sical Review E, 2004, 70: 055602.

[18] Y. Q. Ding, Z. Y. Liu, C. Y. Qiu, et al. Metamaterial with simul- taneously negative bulk modulus and mass density. Physical Re- view Letters, 2007, 99: 093904.

[19] S. H. Lee, C. M. Park, Y. M. Seo, et al. Composite acoustic medium with simultaneously negative density and modulus. Phy- sical Review Letters, 2010, 104: 054301.

[20] Y. Cheng, J. Y. Xu and X. J. Liu. One-dimensional structured ul-trasonic metamaterials with simultaneously negative dynamic density and modulus. Physical Review B, 2008, 77: 045134.

[21] K. Deng, Y. Q. Ding, Z. J. He, et al. Theoretical study of sub- wavelength imaging by acoustic metamaterial slabs. Journal of Applied Physics, 2009, 105: 124909.

[22] Y. Lai, Y. Wu, P. Sheng, et al. Hybrid elastic solids. Nature Materials, 2011, 10(8): 620-624.

[23] G. W. Milton, M. Briane and J. R. Willis. On cloaking for elas- ticity and physical equations with a transformation invariant form. New Journal of Physics, 2006, 8: 248.

[24] H. Chen, C. Chan. Acoustic cloaking in three dimensions using acoustic metamaterials. Applied Physics Letters, 2007, 91: 183518.

[25] S. A. Cummer, D. Schurig. One path to acoustic cloaking. New Journal of Physics, 2007, 9: 45.

[26] Y. Cheng, F. Yang, J. Y. Xu, et al. A multilayer structured acous- tic cloak with homogeneous isotropic materials. Applied Physics Letters, 2008, 92: 151913.

[27] J. Pendry, J. Li. An acoustic metafluid: Realizing a broadband acoustic cloak. New Journal of Physics, 2008, 10: 115032.

[28] D. Torrent, J. Sánchez-Dehesa. Acoustic cloaking in two dimen- sions: A feasible approach. New Journal of Physics, 2008, 10: 063015.

[29] S. A. Cummer, B. I. Popa, D. Schurig, et al. Scattering theory derivation of a 3d acoustic cloaking shell. Physical Review Let- ters, 2008, 100: 24301.

[30] A. N. Norris. Acoustic cloaking theory. Proceedings of the Royal Society A, 2008, 464: 2411.

[31] Y. Urzhumov, F. Ghezzo, J. Hunt, et al. Acoustic cloaking trans- formations from attainable material properties. New Journal of Physics, 2010, 12: 073014.

[32] Y. Bobrovnitskii. Impedance acoustic cloaking. New Journal of Physics, 2010, 12: 043049.

[33] S. Zhang, C. G. Xia and N. Fang. Broadband acoustic cloak for ultrasound waves. Physical Review Letters, 2011, 106: 024301.

[34] B.-I. Popa, L. Zigoneanu and S. A. Cummer. Expe-rimental acous- tic ground cloak in air. Physical Review Letters, 2011, 106: 253901.

[35] X. Zhu, B. Liang, W. Kan, et al. Acoustic cloaking by a super- lens with single-negative materials. Physical Review Letters, 2011, 106: 014301.

[36] 倪旭, 张小柳, 卢明辉等. 声子晶体和声学超构材料[J]. 物理, 2012, 41(10): 655-662.

[37] Y. Wu, Z.-Q. Zhang. Dispersion relations and their symmetry properties of electromagnetic and elastic metamaterials in two dimensions. Physical Review B, 2009, 79: 195111.

[38] A. Baz. The structure of an active acoustic metamaterial with tunable effective density. New Journal of Physics, 2009, 11: 123010.

分享
Top