非对称运动曲线对凸轮机构接触应力之影响
Effects of Asymmetrical Motion Curve on Contact Stress of the Cam Mechanisms

作者: 徐冠伦 * , 许家荣 , 吴隆庸 :国立清华大学动力机械工程学系,新竹;

关键词: 回位弹簧设计非对称运动规律接触应力Follower Compression Spring Design Asymmetrical Motion Curve Contact Stress

摘要:
藉由应用非对称的运动规律,从动件之运动特性得以改善。本文同时探讨非对称的运动规律对凸轮与从动件之工作表面间的接触应力的影响。根据本文所归纳出的结果,当减速区所占的凸轮旋转角大于加速区所占的凸轮旋转角时,可降低减速度的极值,同时可降低减速区时弹簧力与惯性力所造成的负载。然而,加速区与减速区所占的凸轮旋转角必需适当的分配,以避免过度减少加速区所占的凸轮旋转角,使得加速区的惯性力剧增,进而导致相应增加的接触应力对凸轮轮廓产生严重的破坏。

Abstract:
By applying the asymmetrical motion curve, the kinematic characteristics of the follower motion of the cam mechanism can be improved. This paper also investigates the effects of asymmetrical motion curve on the induced con-tact stress of the mechanism. The results show that the follower motion will have lower maximum deceleration when the cam angle of the deceleration interval is larger than that of the acceleration interval, and in such condition, it may lead to a smaller extreme resulting load caused by the spring force and inertia forces. The asymmetrical ratio of motion curve must be properly specified so as to obtain optimum benefits of the contact stress.

文章引用: 徐冠伦 , 许家荣 , 吴隆庸 (2013) 非对称运动曲线对凸轮机构接触应力之影响。 机械工程与技术, 2, 40-45. doi: 10.12677/MET.2013.22007

参考文献

[1] R. L. Norton. Cam design and manufacturing handbook. New York: Industrial Press, 2002: 236-238.

[2] H. A. Rothbart. Cam design handbook. New York: MacGraw-Hill, 2004: 222-224.

[3] F. A. Chen. Mechanics and design of cam mechanisms. New York: Pergamon Press, 1982: 307-309.

[4] 郭连声, 柴邦衡. 凸轮机构[M]. 北京: 中国机械工业出版社, 1976: 99-127.

[5] 陈雪芳. 非对称运动规律在自动捆扎机凸轮轮廓改进设计中的应用[J]. 包装与食品机械, 1997, 15(6): 34-36.

[6] J. Reeve. Cams for industry. London: Mechanical Engineering Publications Limited, 1995: 57-61, 90-98.

[7] C. N. Neklutin. Mechanisms and cams for automatic machines. New York: American Elsevier, 1969: 96-97.

[8] 张文桐. 非对称运动曲线对凸轮机构接触力之影响[J]. 机构与机器设计, 2003, 14(3): 11-24.

[9] 刘昌棋(中), 牧野洋(日), 曹西京(中). 凸轮机构设计[M]. 北京: 机械工业出版社, 2005: 39-41.

[10] J. A. Collins. Mechanical design of machine elements and machines. New York: John Wiley & Sons, 2003: 232-237.

[11] L. I. Wu, S. H. Wu and H. S. Yan. Simplified graphical determination of disk-cam curvature. Mechanism and Machine Theory, 1999, 34: 1023-1036.

[12] A. Biswas, M. Stevens and G. L. Kinzel. A comparison of approximate methods for the analytical determination of profiles for disk cams with roller followers. Mechanism and Machine Theory, 2004, 39: 645-656.

[13] J. K. Davidson. Calculating cam profiles quickly. Machine Design, 1978, 50(28): 151-155.

[14] 颜鸿森, 吴隆庸. 机构学[M]. 台湾: 台湾东华书局股份有限公司, 2006: 268-285.

[15] L. I. Wu. Calculating conjugate cam profile by vector equation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2003, 217(10): 1117-1123.

[16] P. W. Jenson. Cam design and manufacture (2nd edition). New York: Marcel Dekker, 1987: 141-150.

分享
Top