应用模糊为基础的方法于太阳能光伏系统之最大功率追踪
A Fuzzy-Based Algorithm to Maximum Power Point Tracking for Photovoltaic System

作者: 梁瑞勋 , 周智帆 , 陈一通 , 曾万存 :国立云林科技大学电机工程系;

关键词: 太阳能光伏系统升压型转换器模糊理论最大功率追踪Photovoltaic System Boost Converter Fuzzy Theorem Maximum Power Point Tracking

摘要: 本文提出以模糊理论为基础的方法应用于太阳能光伏系统之最大功率追踪,此方法可以较快速及稳定的使太阳能光伏板工作在最大功率点,以便于供给负载所需,让整个太阳能光伏发电系统达到最大效率以减少能源损失。模糊理论的优势为可以面对不确定性,而在太阳能光伏板之最大功率追踪方面,需面对日照强度和负载等因素变动的不确定性。以模糊为基础的方法去进行最大功率追踪,可以经由输入模糊化、模糊推论及解模糊化的过程,求得其适当的输出解,再利用其输出解,适当的调整开关责任周期,进而驱使电路,使太阳能光伏板能更快速且更稳定的搜寻到最大功率点。本文的太阳能光伏系统最大功率追踪架构主要有太阳能光伏阵列、直流直流Z-源升压型转换器与数位处理器所组成,并以数位信号处理器(TMS320LF2407A)作为数位控制的核心,进而减少许多电子电路元件。由实际量测的结果可知,本文所采用之方法确实可以达到最大功率追踪之目的。

Abstract: This paper presents a fuzzy-based tracking algorithm to maximum power point tracking (MPPT) for photovoltaic (PV) system. The proposed fuzzy-based tracking algorithm can let the PV cell to work fast and stably on the maximum power point that makes the load can obtain the highest power. In the MPPT of the PV system, the sunlight intensity and load are uncertain factors. This advantage of the fuzzy-method is to deal with the uncertainty. The proposed fuzzy-based tracking algorithm is used to get a solution to adjust the duty cycle of the switch of the boost converter. The structure of the MPPT of the PV system is mainly composed of PV array, dc-dc Z-source boost converter and digital signal processor. A digital signal processor (TMS320LF2407A) is used for the system control that can reduce hardware components. It is found from the results that the proposed method can effectively achieve maximum power point and significantly improve the tracking efficiency.

文章引用: 梁瑞勋 , 周智帆 , 陈一通 , 曾万存 (2013) 应用模糊为基础的方法于太阳能光伏系统之最大功率追踪。 可持续能源, 3, 45-53. doi: 10.12677/SE.2013.33008

参考文献

[1] E. Román, R. Alonso, P. Ibañez, S. Elorduizapatarietxe and D. Goitia. Intelligent PV module for grid-connected PV systems. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1066- 1073.

[2] C. C. Hua, J. G. Lin and C. M. Shen. Implementation of a DSP-controlled photovoltaic system with peak power tracking. IEEE Transactions on Industrial Electronics, 1998, 45(1): 99- 107.

[3] 陈家宏. 太阳能电池最大功率点追踪之设计与制作[D]. 淡江大学, 2001.

[4] W. Xiao, W. G. Dunford. A modified adaptive hill climbing MPPT method for photovoltaic power systems. IEEE Power Electronics Specialists Conference, 22-25 June 2004, 3: 1957- 1963.

[5] D. Sera, R. Teodorescu, J. Hantschel and M. Knoll. Optimized maximum power point tracker for fast-changing environmental conditions. IEEE Transactions on Industrial Electronics, 2008, 55(7): 2629-2637.

[6] I. S. Kim, M. B. Kim and M. J. Youn. New maximum power tracker using sliding-mode observer for estimation of solar array current in the grid-connected photovoltaic system. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1027-1035.

[7] E. V. Solodovnik, S. Liu and R. A. Dougal. Power controller design for maximum power tracking in solar installations. IEEE Transactions on Power Electronics, 2004, 19(5): 1295-1304.

[8] 李思贤. 数位式单相低功率太阳光电能转换系统[D]. 国立中山大学, 2003.

[9] 梁瑞勋, 周智帆, 曾万存. 采用Z-源结构的光伏发电电力转换系统之研制[A]. 2012第十一届台湾电力电子研讨会暨展览会, TPECE002, 2012.

[10] 董胜源. DSP TMS320LF2407与C语言控制实习. 上海: 长高科技图书, 2004.

[11] K. S. M. Raza, H. Goto, H. J. Guo and O. Ichinokura. A novel speed-sensorless adaptive hill climbing algorithm for fast and ef- ficient maximum power point tracking of wind energy conver- sion systems. IEEE International Conference on Sustainable En- ergy Technologies, Singapore, 24-27 November 2008: 628-633.

[12] H. Al-Atrash, I. Batarseh, and K. Rustom. Effect of measure- ment noise and bias on hill-climbing MPPT algorithms. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2): 745-760.

[13] 杨英魁. 模糊控制理论与技术[M]. 新北: 全华出版社, 1996.

[14] 万绚, 林明毅, 陈宏杰. 模糊理论应用与实务[M]. 台北: 儒林出版社, 2006.

分享
Top