吞吐型湖泊湖滩的地形遥感反演方法—以中国江西省鄱阳湖为例
Bathymetry Mapping of Alternately Filled Lake Using Multi-Temporal Satellite Images

作者: 张思宇 , 王金元 * , 蒙亚平 , 刘传卫 , 刘永学 :南京大学地理与海洋科学学院,南京;

关键词: 吞吐型湖泊水边线检测方法多时相遥感影像鄱阳湖Alternately Filled Lake Waterline Detection Method (WDM) Multi-Temporal Satellite Images Poyang Lake

摘要:
吞吐型湖泊局部地貌变化快速,水动力环境复杂,较为准确、快速地获取吞吐型湖泊湖滩地形信息对于相关湖滩研究、湖滩管理保护与发展具有重大意义。研究基于多时相遥感影像,反演鄱阳湖(典型吞吐型湖泊) 2010年湖滩地形。研究从2010年33幅具有相对连续水位信息的遥感影像中获取水边线;将水边线离散成点后与相应时刻的水位信息内插,进而构建湖滩DEM。通过相对比较与绝对比较的方法进行验证,结果表明:采用该方法构建的鄱阳湖湖滩DEM垂直误差为25.1 cm,精度满足要求。因此,该方法对于构建吞吐型湖泊湖滩地形具有一定适用性。

Abstract:
Alternately filled lake is known for its rapid change terrain and complex hydrodynamic environ-ment. More accurate and rapid access to its topographic map is of great significance to relative research, management, protection and development of its lake beach. This paper tries to derive the bottom topography of Poyang Lake (a typical alternately filled lake) in 2010 based on multi-temporal satellite images. To build the lake beach DEM, waterlines were detected using 33 satellite images acquired at continuous elevations in 2010, and then discretized to point to interpolate with water levels at corresponding moment. Both relative and absolute validation results show that the average height error of DEM derived using this method is 25.1 cm, which is within the precision requirement. All of these findings proved the feasibility of this method to construct the topographic map for alternately filled lake.

文章引用: 张思宇 , 王金元 , 蒙亚平 , 刘传卫 , 刘永学 (2013) 吞吐型湖泊湖滩的地形遥感反演方法—以中国江西省鄱阳湖为例。 地理科学研究, 2, 57-63. doi: 10.12677/GSER.2013.22007

参考文献

[1] 施成熙等. 中国湖泊概论[M]. 北京: 科学出版社, 1996: 30- 31.

[2] 王苏民, 窦鸿身等. 中国湖泊志[M]. 北京: 科学出版社, 1998: 2-3, 171-174.

[3] 杨永崇, 范玖国. 三维空间数据采集方法的分析与比较研究[J]. 测绘科学, 2009, 34(S1): 7103-7105.

[4] 李仁东, 刘纪远. 应用Landsat ETM 数据估算鄱阳湖湿生植被生物量[J]. 地理学报, 2001, 56(5): 532-539.

[5] 马定国, 刘影, 陈洁等. 鄱阳湖区洪灾风险与农户脆弱性分析[J]. 地理学报, 2007, 62(3): 321-332.

[6] 孙鹏, 张强, 陈晓宏等. 鄱阳湖流域水沙时空演变特征及其机理[J]. 地理学报, 2010, 65(7): 828-840.

[7] Y. X. Liu, M. C. Li, L. Cheng, F. X. Li and Y. M. Shu. A DEM inversion method for inter-tidal zone based on MODIS dataset: A case study in the dongsha sandbank of Jiangsu radial tidal sand-ridges, China. China Ocean En-gineering, 2010, 24(4): 735-748.

[8] D. C. Mason, I. J. Davenport, G. J. Robinson, R. A. Flather and B. S. McCartney. Construction of an intertidal digital elevation model by the “water-line” method. Geo-physical Research Letters, 1995, 22(23): 3187-3190.

[9] A. Nieder-meier, D. Hoja and S. Lehner. Topography and morphodynamics in the German Bight using SAR and optical remote sensing data. Ocean Dynamics, 2005, 55(2): 100-109.

[10] D. C. Mason, M. Amin, I. J. Davenport, R. A. Flather, G. J. Robinson and J. A. Smith. Measurement of recent intertidal sediment transport in Morecambe Bay using the waterline method. Estuarine Coastal and Shelf Science, 1999, 49(3): 427- 456.

[11] D. C. Mason, I. J. Davenport, R. A. Flather and C. Gurney. A digital elevation model of the inter-tidal areas of the Wash, England, produced by the waterline method. International Journal of Remote Sensing, 1998, 19(8): 1455-1460.

[12] D. C. Mason, I. J. Davenport, R. A. Flather, C. Gurney, G. J. Robinson and J. A. Smith. A sensitivity analysis of the waterline method of constructing a digital elevation model for intertidal areas in ERS SAR scene of eastern Eng-land. Estuarine Coastal and Shelf Science, 2001, 53(6): 759-778.

[13] D. C. Mason, P. K. Garg. Morphodynamic modelling of intertidal sediment transport in Morecambe Bay. Estuarine Coastal and Shelf Science, 2001, 53(1): 79-92.

[14] D. C. Mason, C. Gurney and M. Kennett. Beach topography mapping: A comparison of techniques. Journal of Coastal Conservation, 2000 6(1): 113-124.

[15] T. R. Scott, D. C. Mason. Data assimilation for a coastal area morphodynamic model: Morecambe Bay. Coastal Engineering, 2007, 54(2): 91-109.

[16] B. Zhao, H. Guo, Y. Yan, Q.Wang and B. Li. A simple waterline approach for tidelands using multi-temporal satellite images: A case study in the Yangtze Delta. Estuarine Coastal and Shelf Science, 2008, 77(1): 134-142.

[17] Y. X. Liu, R.-S. Zhang and M.-C. Li. Ap-proach on the dynamic change in the radial sand ridges offshore the coast of the Jiangsu Province: A case study in Dongsha sandbank. Scientia Ge- ographica Sinica, 2004, 24(2): 199-204.

[18] L. Feng, C. M. Hu, X. L. Chen, et al. MODIS observations of the bottom topogra-phy and its inter-annual variability of Poyang Lake. Remote Sensing of Environment, 2011, 115: 2729¬2741.

[19] Y. X. Liu, M. C. Li, L. Cheng, F. X. LI and K. F. Chen. Topographic mapping of offshore sandbank tidal flats using thewaterline detection method: A case study on the Dongsha Sandbank of Jiangsu radial tidal sand ridges, China. Marine Geodesy, 2012, 35: 362-378.

[20] Y. Liu, M. Li, L. Mao, L. Cheng and F. Li. Toward a method of constructing tidal flat digital elevation models with MODIS and medium-resolution satellite images. Journal of Coastal Research, 2013, 29(2): 438-448.

[21] L. C. Chen. Detection of shoreline changes for tideland areas using multi-temporal satellite images. International Journal of Remote Sensing, 1998, 19(17): 3383-3397.

[22] 胡春华, 姜加虎, 朱海虹. 蚌湖与鄱阳湖水位关系与滩地淹露关系[J]. 海洋与湖沼, 1997, 28(6): 617-623.

分享
Top