聚谷氨酸/聚吡咯复合纳米颗粒的制备及神经毒性研究
Preparation of PGlu/PPy Composite Nanoparticles and Neurotoxicity Evaluation

作者: 曾静雯 , 黄忠兵 , 尹光福 :四川大学材料科学与工程学院;

关键词: 聚吡咯纳米颗粒神经毒性轴突生长聚谷氨酸十二烷基硫酸钠PPy Nanoparticle Neurotoxicity Neural Outgrowth PGlu SDS

摘要:
采用化学氧化合成法分别制备了聚谷氨酸以及聚谷氨酸/十二烷基硫酸钠掺杂的聚吡咯纳米颗粒。通过四探针法、傅里叶红外光谱、扫描电子显微镜、激光粒度分析和zeta电位分析等方法分析其结构和形貌。通过分别与L929以及PC12细胞共培养表征其细胞毒性和神经毒性。结果表明,掺杂剂会影响聚吡咯纳米颗粒的表观形貌和电学特性。PGlu掺杂的PPy纳米颗粒具有良好的细胞相容性,十二烷基硫酸钠的加入有利于提高PPy颗粒的导电性,但对细胞存活率和神经轴突的生长有轻微的不利影响。

Abstract:
Polypyrrole (PPy) nanoparticles doped with poly(glutamic acid) (PGlu) or PGlu/sodium dodecyl sulfate (SDS) were prepared by oxidation polymerization. The PPy nanoparticles were characterized via standard four-probe setup, FT-IR, SEM, Laser Particle Size Analyzer (LPSA) and zeta CAD. In order to evaluate the cytotoxicity and neurotoxicity, the PPy particles were co-cultured with L929 and PC12, respectively. The results show that the dopants have an effect on the morphology and conductivity of PPy nanoparticles. PGlu doped PPy nanoparticles have good cell compatibility. The addition of SDS is beneficial to improve the conductivity of PPy nanoparticles, however it is slightly to the disadvantage of cell viability and neuron growth.

文章引用: 曾静雯 , 黄忠兵 , 尹光福 (2013) 聚谷氨酸/聚吡咯复合纳米颗粒的制备及神经毒性研究。 材料科学, 3, 125-131. doi: 10.12677/MS.2013.33024

参考文献

[1] N. K. Guimard, N. Gomez and C. E. Schmidt. Conducting polymers in biomedical engineering. Progress in Polymer Science, 2007, 32(8-9): 876-921.

[2] D. D. Zhou, et al. Conducting polymers in neural stimulation applications. Implantable Neural Prostheses, 2010, 2: 217-252.

[3] G. Shi, et al. A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide. Biomaterials, 2004, 25(13): 2477-2488.

[4] R. A. Green, N. H. Lovell and L. A. Poole-Warren. Impact of co-incorporating laminin peptide dopants and neurotrophic growth factors on conducting polymer properties. Acta Biomaterialia, 2010, 6(1): 63-71.

[5] H. R. Kang. Solid-state conducting polymer actuator based on electrochemically-deposited polypyrrole and solid polymer electrolyte. High Performance Polymers, 2006, 18(5): 665-678.

[6] K. Ghanbari, S. Z. Bathaie and M. F. Mousavi. Electrochemically fabricated polypyrrole nanofiber-modified electrode as a new electrochemical DNA biosensor. Biosensors and Bioelectronics, 2008, 23(12): 1825-1831.

[7] R. T. Richardson, et al. Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons. Biomaterials, 2009, 30(13): 2614-2624.

[8] 徐海星, 闫玉华, 李世普. 聚吡咯/聚乳酸多孔复合导电材料的制备与表征[J]. 中南大学学报(自然科学版), 2010, 4: 1321- 1326.

[9] 杨水晶等. 聚吡咯对 PC-12 细胞轴突生长情况的研究[J]. 中国科技论文在线, 2008, 3(9): 659-662.

[10] W. R. Stauffer, X. T. Cui. Polypyrrole doped with 2 peptide sequences from laminin. Biomaterials, 2006, 27(11): 2405-2413.

[11] T. G. Davidson, T. G. Turner. An IR spectroscopic study of the electrochemical reduction of polypyrrole doped with dodecylsulfate anion. Synthetic Metals, 1995, 72: 121-128.

[12] B. B. Zhao, Z. D. Nan, Formation of self-assembled nanofiber- like Ag@PPy core/shell structures induced by SDBS. Materials Science and Engineering C, 2012, 32: 1971-1975.

[13] D. M. Suter, P. Forscher. Substrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. Journal of Neurobiology, 2000, 44(2): 97-113.

分享
Top