弯曲半径和时效制度对7475铝合金蠕变时效成形的影响
Effects of Bending Radius and Ageing Conditions on the Creep Age Forming of 7475 Aluminum Alloy

作者: 邓运来 , 龙旭初 , 张劲 :中南大学材料科学与工程学院; 蒋裕 :上海飞机设计研究院;

关键词: 单曲率弯曲蠕变时效成形回弹7475铝合金Single Curvature Bending Creep Age Forming Springback 7475 Aluminum Alloy

摘要:
基于单曲率弯曲蠕变成形装置,针对7475铝合金板材进行了一系列蠕变时效成形实验,测得了不同时效制度和弯曲半径下的回弹量。采用电导率、维氏硬度、金相显微镜、透射电子显微镜和室温拉伸等手段分析了蠕变时效试样的性能与微观组织,并与人工时效试样进行了对比分析。结果表明:回弹量随着弯曲半径的减小、时效时间的延长和时效温度的升高而降低;弯曲蠕变时效试样比人工时效试样具有较高的屈服强度和抗拉强度,延伸率则相反;随着弯曲半径的增大,屈服强度和抗拉强度均呈现出先增后减的规律,在弯曲半径为1200 mm附近存在峰值;弯曲蠕变时效后试样的晶粒尺寸和形状与人工时效试样无明显区别,其析出相则比人工时效试样更为细小和致密。

Abstract:
Based on the single curvature bending creep forming device, a series of creep age forming tests of 7475 aluminum alloy sheets were conducted. The springback of formed samples with different ageing conditions or bending radiuses were measured. Then the properties and microstructures of the creep ageing formed samples were studied by electric conductivity tests, Vickers hardness tests, optical microscopy tests, transmission electron microscopy tests and tensile tests, respectively. And the results were compared with the artificial aged samples. The results show that the springback decreases with the decreasing bending radius, the increasing temperature and ageing time. The yield strength and the tensile strength of the bending creep ageing formed samples are higher than the artificial aged samples, but the elongation is the opposite. As the increasing of the bending radius, both the yield strength and the tensile strength increase first and then decrease, and the peak value appears near the bending radius of 1200 mm. No clear difference exists in the size and shape of grains between the creep aged samples and the artificial aged samples, the size and the particle spacing of the precipitates of creep aged samples are smaller than the artificial aged samples.

文章引用: 邓运来 , 龙旭初 , 蒋裕 , 张劲 (2013) 弯曲半径和时效制度对7475铝合金蠕变时效成形的影响。 材料科学, 3, 103-109. doi: 10.12677/MS.2013.33020

参考文献

[1] M. C. Holman. Autoclave age forming large aluminum aircraft panels. Mechanical Working and Technology, 1989, 20(9): 477-488.

[2] P. P. Jeunechamps, K. C. HO and J. Lin. A closed form technique to predict springback in creep age-forming. International Journal of Mechanical Sciences, 2006, 48(6): 621-629.

[3] A. W. Zhu, E. A. Starke Jr. Stress aging of AlxCu alloys; experiments. Acta Mater, 2001, 49(4): 285-295.

[4] L. H. Zhan, J. G. Lin and T. A. Dean. A review of the development of creep age forming: Experimentation, modelling and applications. International Journal of Machine Tools and Manufacture, 2011, 51(1): 1-17.

[5] 韩志仁, 桂根, 张凌云. 飞机大型蒙皮制造技术现状分析[J]. 沈阳航空工业学院学报, 2008, 25(3): 1-5.

[6] K. C. Ho, J. Lin and T. A. Dean. Constitutive modelling of primary creep for age forming an aluminium alloy. Journal of Materials Processing Technology, 2004, 153-154: 122-127.

[7] 周亮, 邓运来, 晋坤. 预处理对2124铝合金板材蠕变时效微结构与力学性能的影响[J]. 材料工程, 2010, 2: 81-96.

[8] S. C. Wang, M. J. Starink. Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li) based alloys. International Materials Reviews, 2005, 50(4): 193-215.

[9] D. Bakavos, P. B. Prangnell and R. Dif. A comparison of the effects of ageforming on the precipitation behaviour in 2xxx, 6xxx and 7xxx Ae rospace Alloys. Institute of Materials Engineering Australasia Ltd, 2004: 124-131.

[10] L. Huang, M. Wan and C. L. Chi. FEM analysis of spring-backs in age forming of aluminum alloy plates. International Materials Reviews, 2007, 20: 564-569.

[11] L. H. Zhan, J. G. Lin and T. A. Dean. A review of the development of creep age forming: Experimentation, modelling and applications. International Journal of Machine Tools and Manufacture, 2011, 51(1): 1-17.

[12] S. Spigarella, M. El Mehtedi. Microstructure-related equations for the constitutive analysis of creep in magnesium alloys. Scripta Mate-rialia, 2009, 61(7): 729-732.

[13] 周贤宾, 常和生, 戴美云. 时效应力松弛校形原理及其在蒙皮制造中的运用[J]. 北京航空航天大学学报, 1992, 2: 81-96.

[14] 宁爱林, 刘志义, 冯春等. Al-Zn-Mg-Cu合金组织和电导率及抗应力腐蚀性能研究[J]. 材料热处理学报, 2008, 2: 65-71.

[15] 赵飞, 周文龙, 孙中刚. 不同预弯半径下2A12铝合金时效成形[J]. 中国有色金属学报, 2011, 2: 303-310.

[16] X. M. Li, M. J. Starink. Identification and analysis of intermetallic phases in overaged Zr-containing and Cr-containing Al-Zn- Mg-Cu alloys. Journal of Alloys and Compounds, 2011, 509(2): 471-476.

[17] Y. H. Zhao, X. Z. liao and Z. Jin. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing. Acta Materialia, 2004, 52: 4589-4599.

[18] X. J. Jiang, B. N. B. Holme. Differential scanning calorimetry and elec-tron diffraction investigation on low-temperature aging in Al-Zn-Mg alloys. Metallurgical and Materials Transactions A, 2000, 31(2): 339-348.

分享
Top