连续周期解析信号的相位幅度研究
Researches on Phase and Amplitude of Continuous Circular Analytic Signals

作者: 谭立辉 :广东工业大学应用数学学院;

关键词: 连续周期解析信号幅度不变信号重构Circular Analytic Signals Amplitude Preservation Signal Reconstruction

摘要:
在本文中,我们将指出任意连续的周期解信号不仅可以分解为极小相位信号和极大相位信号的乘积,也可以分解为极小相位信号和全相位信号的乘积。在此基础上,我们给出了连续的周期解析信号可以仅由相位信息或者幅度信息重构的条件。更进一步的,我们研究了具有不连通的频带有限的周期解析信号保持幅度不变的条件。

Abstract:
We will show in this paper that a continuous circular analytic signal can not only be represented as a product of a minimum phase signal and a maximum phase signal, but also a product of a minimum phase signal and an all phase signal. Based on the decomposition theorem, we will give some conditions under which that a continuous circular analytic signal can be reconstructed from phase or amplitude. Moreover, we will further discuss under what conditions two disconnect circular analytic signals will have the same amplitude.

文章引用: 谭立辉 (2013) 连续周期解析信号的相位幅度研究。 理论数学, 3, 228-233. doi: 10.12677/PM.2013.33034

参考文献

[1] D. Gabor. Theory of communications. Journal Institute of Electrical Engineers, 1946, 93: 429-457.

[2] M. H. Hayes, J. S. Lim and A. V. Oppenheim. Signal reconstruction from phase or amplitude. IEEE Transactions on Acoustic, Speech, and Signal Processing, 1980, 28(6): 672-680.

[3] S. Cirtis, A. Oppenheim and J. Lim. Signal reconstruction from Fourier sign information. Journal of the Optical Society of America, 1983, 73(11): 1413-1420.

[4] A. Kumaresan, A. Rao. Model-based approach to envelope and positive instantaneous frequency estimation of signals with speech applications. The Journal of the Acoustical Society of America, 1999, 105(3): 1912-1924.

[5] B. Picinbono. On instantaneous amplitude and phase of signals. IEEE Transactions on Signal Processing, 1996, 45(3): 552-560.

[6] A. V. Oppenheim, R. W. Schafer. Discrete-time signal processing. Prentice Hall: Englewood Cliffs, 1989.

[7] J. B. Garnett. Bounded analytic function. New York: Academic Press, 1987.

[8] L. H. Tan, L. H. Yang and D. R. Huang. The structure of instantaneous frequencies of periodic analytic signals. Science China: Series A, 2010, 53(2): 347-355.

[9] T. R. Crimmins, J. R. Fienup. Uniqueness of phase retrieval for functions with sufficiently disconnected support. Journal of the Optical Society of America, 1983, 73(2): 218-221.

[10] E. M. Hofstetter. Construction of time-limited functions with specified autocorrelation functions. IEEE Transactions on Information Theory, 1963, 51: 868-869.

[11] P. Jaming. Phase retrieval techniques for radar ambiguity problems. Journal of Fourier Analysis and Applications, 1999, 5: 309-329.

分享
Top