半离散Kuramoto-Sivashinsky方程的全局吸引子
Global Attractor for Semi-Discrete Kuramo-to-Sivashinsky Equation

作者: 董胜楠 * , 朱朝生 :西南大学数学与统计学院;

关键词: Kuramoto-Sivashinsky方程Crank-Nicolson格式全局吸引子Kuramoto-Sivashinsky Equation Crank-Nicolson Scheme Global Attractor

摘要:
本文研究在具有周期边界条件的半离散Kuramoto-Sivashinsky型方程解的长时间行为。首先利用Crank-Nicolson格式对其进行离散,然后证明了该方程在上紧的全局吸引子的存在。

Abstract:
We study the long-time behaviour with a periodical boundary condition of semi-discrete Kuramoto- Sivashinsky equation in First, we use the Crank-Nicolson scheme to discrete this equation to prove that such a semi-discrete equation possesses a global arrtactor in , then we also show that this global attractor is actually a compact set of and .

文章引用: 董胜楠 , 朱朝生 (2013) 半离散Kuramoto-Sivashinsky方程的全局吸引子。 理论数学, 3, 223-227. doi: 10.12677/PM.2013.33033

参考文献

[1] K. L. Adams, J. R. King, R. H. Tew. Beyond-all-orders effects in muliple-scales asymptonics: Travelling-wave equations to the Kuramoto- Sivashinsky equation. Journal of Engineering Mathematics, 2003, 45(3-4) 197-226.

[2] E. Cerpa, A. Mercado. Local exact controllability to the trajectories of the 1-D Kuramoto-Sivashinsky equation. Journal of Differential Equations, 2011, 250(4): 2024-2044.

[3] S. Publjevic. Boundary model predictive control of Kuramoto-Sivashinsky equation with input and state constraints. Computers & Chemical Engineering, 2011, 34(10): 1655-1661.

[4] L. Molinet. Local disspativity in L2 for the Kuramoto-Sivashinsky equation in spatial dimension 2. Journal of Dynamics and Differential Equations, 2000, 12(3): 533-556.

[5] C. I. Byrnes, D. S. Gilliam, C. Hu and V. I. Shubov. Zero dynamics boundary control for regulation of the Kuramoto-Sivashinsky equation. Mathematical and Computer Modelling, 2010, 52(5-6): 875-891.

[6] D. Wilczak. Chaos in the Kuramoto-Sivashinsky equation: A computer-assisted proof. Journal of Differential Equations, 2003, 194(2): 433- 459.

[7] W. C. Troy. The existence of Steady of Kuramoto-Sivashinsky equation. Journal of Differential Equations, 1989, 82(2): 269-313.

[8] N. Akroune. Regularity of the attractor for a weakly damped nonlinear Schrodinger equation on . Applied Mathematics Letters, 1999, 12(1): 45-48.

[9] C. S. Zhu. Attractors of the nonlinear Schrodinger equation. Communications in Mathematical Analysis, 2008, 4(2): 67-75.

[10] O. Goubet. Global attractor for weakly damped nonlinear Schrodinger equations in . Nonlinear Analysis Theory, 2009, 71(2): 317-320.

[11] J. M. Ghidaglia, R. Temam. Attractors for damped nonlinear hyperbolic equations. Journal de Mathématiques Pures et Appliquées, 1987, 66: 273-319.

[12] E. Ezzoug, W. Kechiche and E. Zahrouni. Finite dimensional global attractor for a semi-discrete nonlinear Schrodinger equation with a point defect. Applied Mathematics and Computation, 2011, 217(19): 7818-7830.

[13] M. Abounouh. Global attractor for a time discretization of damped forced KdV equation, to appear.

分享
Top