水热法制备硫掺杂的TiO2染料敏化纳米晶太阳能电池光阳极
Sulfur-Doped TiO2 Nanocrystalline Photoanodes for Dye-Sensitized Solar Cells by Hydrothermal

作者: 王 雷 , 罗秋洋 , 孙 强 , 诸跃进 :宁波大学理学院,宁波;

关键词: TiO2染料敏化纳米晶太阳能电池硫掺杂水热法 TiO2 Dye-Sensitized Solar Cells Sulfur-Doped Hydrothermal

摘要:

采用水热法制备了硫掺杂TiO2光阳极,并利用XRD、UV-vis、XPS对其进行表征和分析。结果表明,经过硫掺杂的TiO2是锐钛矿型;硫原子的掺杂提高了二氧化钛对可见光的吸收能力;硫掺杂过的DSSCs的性能发生了明显的改善,其中0.770 g硫脲样品的性能最优,开路电压为0.72 V,短路光电流密度为16.00 mA·cm−2,光电转换效率提高14.82%。效率的提高是由于硫掺杂使得从染料注入到TiO2纳米晶的电子增多,提高了电子的传输速率,使得电池的短路电流密度增加,从而提高了电池的效率。

Abstract: Sulfur-doped TiO2 photoanode was prepared by hydrothermal method, and then characterized and analyzed through XRD, UV-vis, and XPS. The results showed that: Sulfur-doped TiO2 doped by sulfur was anatase; Sulfur-doped TiO2 atoms improved visible light absorption ability of TiO2; The performance of DSSCs doped by sulfur improved markedly, in which 0.770 g thiourea sample performed the best. Its open-circuit voltage was 0.72 V, short-circuit current density was 16 mA·cm−2, and photoelectric conversion efficiency reached 14.82% high. The improvement of efficiency is resulted from the Sulfur-doped which leads to the following effects: more electrons from dye are injected into the TiO2 nanometer crystal, the electron transfer rate is enhanced, therefore short circuit current density of the battery is increased, finally the efficiency of the battery is improved.

文章引用: 王 雷 , 罗秋洋 , 孙 强 , 诸跃进 (2013) 水热法制备硫掺杂的TiO2染料敏化纳米晶太阳能电池光阳极。 应用物理, 3, 72-76. doi: 10.12677/APP.2013.33014

参考文献

[1] M. Grätzel. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003, 4(2): 145-153.

[2] R. D. McConnell. Assessment of the dye-sensitized solar cell. Renewable & Sustainable Energy Reviews, 2002, 6(3): 273-295.

[3] Q. Hou, Y. Zheng, J. Chen, W. Zhou, J. Deng and X. Tao. Visible-light-response iodine-doped titanium dioxide nanocrystals for dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21: 3877-3883.

[4] C. A. N. Fernando, I. Kumarawadu, K. Takahashi, A. Kitagawa and M. Suzuki. Crystal violet dye-sensitized photocurrent by participation of surface states on p-CuSCN photocathode. Solar Energy Materials and Solar Cells, 1999, 58(4): 337-347.

[5] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga. Visible-light photocataly-sis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269-271.

[6] H. Irie, Y. Watanabe and K. Hashimoto. Nitro-gen-concentration dependence on photocatalytic activity of TiO2−xNx powders. Journal of Physical Chemistry B, 2003, 107(23): 5483-5846.

[7] T. Umebayashi, T. Yamaki, H. Itoh and K. Asai. Band gap narrowing of titanium dioxide by sulfur doping. Applied Physics Letters, 2002, 81(3): 454-456.

[8] S. U. M. Khan, M. Al-Shahry and W. B. Ingler Jr. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 2002, 297(5590): 2243-2245.

[9] H. Irie, Y. Watanabe and K. Hashimoto. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chemis- try Letters, 2003, 32: 772-773.

[10] S. H. Kang, S. H. Kim, J. Y. Kim and Y. E. Sung. En-hanced photocurrent of nitrogen-doped TiO2 film for dye-sensitized solar cells. Materials and Chemistry Physics, 2010, 124: 422-426.

[11] Q. Hou, Y. Zheng, J. Chen, W. Zhou, J. Deng and X. Tao. Visible-light-response iodine-doped titanium dioxide nanocrystals for dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21: 3877-3883

[12] H. Robert, G. Andrei, J. Salonen, et al. Carbon doping of self-organized TiO2 nanotube layers by thermal acetylene treatment. Nanotechnology, 2007, 18(10): 1-4.

[13] Y. L. Su, X. W. Zhang, S. Han, et al. F-B-codoping of anodized TiO2 nanotubes using chemical vapor deposition. Electrochemistry Communications, 2007, 9(9): 2291-2298.

[14] Y. Su, S. Chen, Q. Xie, et al. A silicon-doped TiO2 nanotube arrays electrode with enhanced photoelectrocatalytic activity. Applied Surface Science, 2008, 255(5): 2167-2172.

[15] T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Applied Catalysis A, 2004, 265: 115-121.

[16] X. H. Wang, J.-G. Li, H. Kamiyama, M. Katada, N. Ohashi, Y. Moriyoshi and T. Ishigaki. Pyrogenic Iron(III)-doped TiO2 nano- powders synthesized in RF thermal plasma:  Phase formation, defect structure, band gap, and magnetic properties. Journal of Ameri-can Chemical Society, 2005, 127(31): 10982-10990.

[17] S. Liu, X. Chen. A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation. Journal of Haz-ardous Materials, 2008, 152(1): 48-55.

[18] T. Ohno, T. Mitsui and M. Matsumura. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chemistry Letters, 2003, 32(4): 364-367.

[19] D. I. Sayago, P. Serrano, O. Böhme, A. Goldoni, G. Paolucci, E. Román and J. A. Martín-Gago. Adsorption and desorption of SO2 on the TiO2(110)-(1 × 1) A photoemission study surface: A photoemission study. Physical Review B, 2001, 64: 2054021- 2054028.

[20] J. A. Rengifo-Herrera, E. Mielczarski, J. Mielczarski, N. C. Castillo, J. Kiwi and C. Pulgarin. Escherichia coli inactivation by N, S co-doped com-mercial TiO2 powders under UV and visible light. Applied Catalysis B, 2008, 84(3-4): 448-456.

[21] T. Umebayashi, T. Yamaki, S. Yamaoto, et al. Sulfur-doping of rutile-titanium dioxide by ion implantation: Photocurrent spectroscopy and first-principles band calculation studies. Journal of Applied Physics, 2003, 93(9): 5156-5160.

[22] J. Baltru-saitis, P. M. Jayaweera and V. H. Grassian. Sulfur dioxide adsorption on TiO2 nanoparticles: Influence of particle size, coadsorbates, sample pretreatment, and light on surface speciation and surface coverage. Journal of Physical Chemistry C, 2011, 115(2): 492-500.

[23] W. Ho, J. C. Yu and S. C. Lee. Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. Journal of Solid State Chemistry, 2006, 179(4): 1171-1176.

[24] X. H. Tang, D. Y. Li. Sulfur-doped highly ordered TiO2 nanotubular arrays with visible light response. Journal of Physical Chemistry C, 2008, 112(14): 5405-5409.

[25] E. M. Rockafellow, L. K. Stewart and W. S. Jenks. Is sulfur-doped TiO2 an effective visible light photocatalyst for remedia-tion. Applied Catalysis B, 2009, 91: 554-562.

[26] S. H. Kang, S. H. Kim, J. Y. Kim and Y. E. Sung. Enhanced photocurrent of nitro-gen-doped TiO2 film for dye-sensitized solar cells. Materials Chemistry and Physics, 2010, 124(1): 422- 426.

[27] S. Liu, X. Chen. A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation. Journal of Hazard Materials, 2008, 152(1): 48-55.

[28] P. Prene. All-solid-state dye-sensitized nanoporous TiO2 hybrid solar cells with high energy-conversion efficiency. Ad-vanced Materials, 2006, 18(19): 2579-2582.

分享
Top