河南省能源消费总量预测及影响因素研究
Study of the Total Energy Consumption Prediction and Industrial Energy Consumption Factors Decomposition in Henan Province

作者: 王 斌 * , 张瑞芹 , 侯小阁 , 王克 , 徐香勤 :郑州大学化学与分子工程学院,郑州;

关键词: 能源消费ARIMA模型预测LMDI因素分解Energy Consumption ARIMA Model Prediction LMDI Factor Decomposition

摘要:
近年来河南省能源消费增长很快,其中工业能耗占绝大部分,做好河南省能源消费总量的预测及其影响因素的研究,为能源工作决策提供科学依据,对河南省能够科学、合理的完成“十二五”节能目标,调整经济结构,实现经济的可持续发展具有重要意义。本文运用ARIMA模型对河南省“十二五”期间能源消费总量进行了预测,并采用LMDI分解法对河南省能源消费影响因素进行了分解研究。结果表明,ARIMA模型对河南省能源消费总量的预测效果较好,可以作为河南省能源预测工具;“十二五”期间,河南省能源消费总量仍将以较高的速度持续增长;2005~2011年河南省节能主要依靠能源效率的提高,其中以工业中的高载能行业表现最为明显,而各行业结构调整的贡献普遍偏小,经济结构调整和节能减排依然是我省今后经济发展的主要任务。

Abstract:
In recent years, energy consumption in Henan Province has grown rapidly, with the vast majority of industrial energy consumption. A thorough evaluation of predicting total energy consumption and identi- fying factors affecting energy consumption, to provide a basis for energy policy-decision, is important for Henan Province to complete the 12th Five-Year energy-saving target. Adjusting the economic and industrial structure, to achieve sustainable economic development is important. The paper uses Autoregressive Inte- grated Moving Average (ARIMA) model to predict the total energy consumption during the 12th Five-Year and Logarithmic Mean Divisia Index (LMDI) method to decomposition the factors affecting energy con- sumption during 2005-2011, in Henan Province. The results show that, the ARIMA model predicting energy consumption is good and the model can be used as energy forecasting tools in Henan Province. During the 12th Five-Year period, the total energy consumption in Henan Province will continue to grow and maintain a high growth rate. Between 2005 to 2011, energy-saving in Henan is relied on enhanced energy efficiency, especially with high energy consuming industries, with the inferior contribution from structural adjustment. Nonetheless, economic restructuring and energy saving remain the main task of the future economic development in Henan Province.

文章引用: 王 斌 , 张瑞芹 , 侯小阁 , 王克 , 徐香勤 (2013) 河南省能源消费总量预测及影响因素研究。 低碳经济, 2, 67-73. doi: 10.12677/JLCE.2013.22011

参考文献

[1] 胡广阔, 王克振. 基于ARIMA模型的甘肃省能源消费预测[J]. 科学技术与工程, 2009, 9(20): 6002-6005.

[2] 薛黎明, 侯运炳, 闫旭, 何广. 基于ARIMA模型的我国能源消费结构趋势分析与预测[J]. 中国矿业, 2011, 20(4): 24-27.

[3] 刘勇, 汪旭晖. ARIMA模型在我国能源消费预测中的应用[J]. 经济经纬, 2007, 5: 11-13.

[4] 张峰, 刘伟. 北京市能源消费预测与政策建议[J]. 中国人口资源与环境, 2008, 18(3): 99-102.

[5] 夏艳清. 我国工业能源消费及污染排放演变机理研究[J]. 软科学, 2011, 25(10): 59-64.

[6] 魏子清, 周德群. 基于LMDI分解的江苏省能源消费影响因素实证分析[J]. 价格月刊, 2009, 2: 51-54.

[7] B. W. Ang. Decomposition analysis for policy making in energy: Which is the preferred method. Energy Policy, 2004, 32(9): 1131- 1139.

[8] B. W. Ang. The LMDI approach to decomposition analysis: A practical guide. Energy Policy, 2005, 33(7): 867-871.

[9] A. Hasanbeigi, S. de la Rue du Cann and J. Sathaye. Analysis and decomposition of the energy intensity of California indu- stries intensity of California industries. Energy Policy, 2012, 46: 234-245.

[10] 岳婷, 龙如银. 基于LMDI的江苏省能源消费总量增长效应分析[J]. 资源科学, 2010, 32(7): 1266-1271.

分享
Top