带有参数和外力激励的Josephson系统的复杂动态
Complex Dynamics in Josephson System with Parametric and External Excitations

作者: 傅湘陵 :湖南科技大学数学与计算科学学院; 陈晖荣 :湖南师范大学数学与计算机科学学院; 邓 进 :湖南工程学院理学院;

关键词: 二阶平均Melnikov方法分支混沌周期扰动拟周期扰动Second-Order Averaging Method Melnikov’s Method Bifurcation Chaos Periodic Perturbations Quasi-Periodic Perturbations

摘要:
本文应用二阶平均方法和Melnikov理论,研究带有参数和外力激励的Josephson系统。给出了周期扰动下系统产生混沌的准则;得到了在拟周期扰动下当时平均系统的混沌存在准则;证明了当时,平均系统的混沌存在准则不能通过运用Melnikov方法给出;通过数值模拟验证了理论分析结果,并发现了系统的一些新的有趣的动态。

Abstract:
In this paper, the Josephson system with parametric and external excitations by using second-order averaging methods and Melnikov’s methods is investigated in detail. The threshold values of existence of chaotic motion are obtained under the periodic perturbation. We prove the criterion of existence of chaos in averaged system under quasi-periodic perturbation for by applying the second-order averaging method and Melnikov’s method, and prove that the criterion of existence of chaos in second-order averaged system under quasi-periodic perturbation for cannot be obtained by applying Melnikov’s method. The theoretical results are verified and some new dynamics are demonstrated by numerical simulation.

文章引用: 傅湘陵 , 陈晖荣 , 邓 进 (2013) 带有参数和外力激励的Josephson系统的复杂动态。 理论数学, 3, 149-168. doi: 10.12677/PM.2013.33024

参考文献

[1] S. N. Rasband. Chaotic Dynamics of nonlinear systems. New York: Awiley, 1990.

[2] Z. J. Jing, K. Y. Chan, D. H. Xu, H. J. Cao. Bifurcations of periodic solutions and chaos in Josephson system. Discrete and Continuous Dynamical Systems, 2001, 7(3): 573-592.

[3] M. Levi, F. Hoppensteadt and W. Miranke. Dynamics of the Josephson junction. The Quarterly of Applied Mathematics, 1978, 35: 167-198.

[4] A. Pikovsky, M. Rosenblum and J. Kurths. Synchronization: A universal concept in nonlinear sciences. Cambridge: Cambridge University Press, 2001.

[5] V. N. Belyky, N. F. Pedersen and O. H. Soerensen. Shunted-Josephson model, I. The autonomous, II. The non-autonomous case. Physical Review B, 1977, 16: 4853-4871.

[6] W. A. Schlup. I-V characteristics and stationary dynamics of a Josephson junction including the interference term in the current phase relation. Journal of Physics C: Solid State Physics, 1974, 7(4): 736-748.

[7] A. A. Abidi, L. O. Chua. On the dynamics of Josephson junction circuits. IEE Journal on Electronic Circuits and Systems, 1979, 3(4): 186-200.

[8] M. K. Odyniec, L. O. Chua. Josephson-junction circuit analysis via integral manifolds, Part II. IEEE Transactions on Circuits and Systems, 1985, CAS-32(1): 34-45.

[9] F. M. A. Salam, S. Satry. Dynamics of the forced Josephson junction circuit: The regions of chaos. IEEE Transactions on Circuits and Systems, 1985, 32(8): 784-796.

[10] M. Bartuccelli, P. L. Christiansen, N. F. Pedersen and M. P. Soerensen. Predicition of chaos in a Josephson junction by the Melnokov-function technique. Physical Review, 1986, B33: 4686-4691.

[11] Z. J. Jing. Application of qualitative methods of differential equations to study phase-locked loops. SIAM Journal on Applied Mathematics, 1983, 43(6): 1245-1258.

[12] Z. J. Jing. Local and global bifurcations and applications in a predator-prey system with several parameters. Systems Science and Mathematical Sciences, 1989, 2: 337-352.

[13] H. J. Cao, Z. J. Jing. Chaotic dynamics of Josephson equation driven by constant dc and ac forcings. Chaos, Solitons & Fractals, 2001, 12(10): 1887-1895.

[14] Z. J. Jing, H. J. Cao. Bifurcation of periodic orbits in Josephson equation with a phase shift. International Journal of Bifurcation and Chaos, 2002, 12(7): 1515-1530.

[15] J. P. Yang, W. Feng and Z. J. Jing. Complex dynamics in Josephson system with two external forcing terms. Chaos, Solitons & Fractals, 2006, 30(1): 235-256.

[16] S. Wiggins. Introduction to applied nonlinear dynamical systems and chaos. Berlin: Springer-Verlag, 1990.

[17] 刘维. 精通Matlab与C++混合程序设计(第三版)[M]. 北京: 北京航空航天大学出版社, 2012.

分享
Top