高比表面积Al2O3-TiO2二元气凝胶小球的制备
Preparation of High Specific Surface Area Alumina-Titania Binary Aerogel Beads

作者: 李 想 , 秦国彤 :北京航空航天大学化学与环境学院,教育部仿生智能界面科学与技术重点实验室,北京; 王亚涛 :开滦煤化工研发中心,唐山; 魏微 :北京联合大学应用文理学院,北京;

关键词: Al2O3-TiO2二元气凝胶小球溶胶–凝胶法比表面积酸量Alsub>2O3-TiOsub>2 Binary Aerogel Beads Sol-Gel Technology Specific Surface Area Acid Amounts

摘要: 以拟薄水铝石和水合硫酸氧钛为前驱体,水为溶剂,采用溶胶–凝胶、烃氨成球法、老化和控制干燥制备出大比表面积的AlO2-TiO2复合气凝胶小球。研究其理化性质并考察了不同铝钛组成及温度对孔结构和酸量的影响。采用了SEM、XRD、FT-IR、NMR、N2吸附–脱附法、NH3-TPD等手段对所制得的复合氧化物进行了表征。结果显示,复合氧化物中TiO2为锐钛矿型,Al2O3为无定形。通过混合溶胶共水解缩聚及老化和控制干燥,使不同铝/钛比的二元气凝胶小球的比表面积均达到200 m2/g以上,总酸量达到0.8 mmol NH3/g以上。不同铝/钛比的二元气凝胶小球比表面积和酸量相近,孔径可通过铝/钛比调整。

Abstract: Crack-free and high surface area mesoporous alumina-titania binary aerogel beads have been synthesized by sol-gel technology, the ball dropping method (BDM), extended aging and gradient drying method with pseudo boehmite and dehydrate titanyl sulfate as precursors and water as solvent. The effects of composition and calcination temperature on pore structure and acid amounts have been investigated and discussed. The binary aerogel beads have been charac-terized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier-transform infrared spectros-copy (FT-IR), solid state nuclear magnetic resonance (NMR), nitrogen adsorption/desorption analysis and ammonia- temperature programmed desorption (TPD). The obtained aerogel beads show surface area of 200 m2/g and acid amounts of 0.8 mmol NH3/g respectively. The binary aerogel beads with different constitutes show similar specific sur-face area and acid amounts. The pore size of aerogel beads can be modified by changing composition and calcination temperature.

文章引用: 李 想 , 秦国彤 , 王亚涛 , 魏微 (2013) 高比表面积Al2O3-TiO2二元气凝胶小球的制备。 化学工程与技术, 3, 86-90. doi: 10.12677/HJCET.2013.33016

参考文献

[1] M, Shariq Vohra, K. Tanaka. Photocatalytic degradation of nitro- tolu-ene in aqueous TiO2 suspension. Water Research, 2002, 36(1): 59-64.

[2] J. Ramirez, L. Cedeño. The role of titania support in Mo-based hydrodesulfurization catalysts. Journal of Catalysis, 1999, 184(1): 59-67.

[3] Y. Saih, M. Nagata, T. Funamoto, et al. Ultra deep hydrodesulfurization of dibenzothiophene derivatives over NiMo/TiO2-Al2O3 catalysts. Applied Catalysis A: General, 2005, 295(1): 11-22.

[4] S. T. Oyama. Novel catalysts for advanced hydro-processing: Transition metal phosphides. Journal of Catalysis, 2003, 216(1-2): 343-352.

[5] T. Korányi, Z. Vít and J. B. Nagy. Support and pretreatment effects on the hydrotreating activity of SBA-15 and CMK-5 sup- ported nickel phosphide catalysts. Catalysis Today, 2008, 130(1): 80-85.

[6] J. Ramirez, L. Ruiz-Ramirez, L. Cedeno, et al. Titania-alumina mixed oxides as supports for molybdenum hydrotreat-ing cata- lysts. Applied Catalysis A: General, 1993, 93(2): 163-180.

[7] S. Maity, J. Ancheyta, L. Soberanis, et al. Alu-mina-titania binary mixed oxide used as support of catalysts for hy-drotreating of Maya heavy crude. Applied Catalysis A: General, 2003, 244(1): 141-153.

[8] S. M. Morris, J. A. Horton and M. Jaroniec. Soft-templating synthesis and properties of mesoporous alumina-titania. Micro- porous and Mesoporous Materials, 2010, 128(1-3): 180-186.

[9] A. Gutiérrez-Alejandre, M. González-Cruz, M. Trom-betta, et al. Characterization of alumina-titania mixed oxide supports: Part II: Al2O3-based supports. Microporous and Mesoporous Materials, 1998, 23(5-6): 265-275.

[10] L. L. Hench, J. K. West. The sol-gel process. Chemical Reviews, 1990, 90(1): 33-72.

[11] A. C. Pierre, G. M. Pajonk. Chemistry of aerogels and their ap- plications. Chemical Reviews-Columbus, 2002, 102(11): 4243- 4266.

[12] P. Tarte. In-fra-red spectra of inorganic aluminates and character- istic vibrational frequencies of AlO4 tetrahedra and AlO6 octa- hedra. Spectrochimica Acta Part A: Molecular Spectroscopy, 1967, 23(7): 2127-2143.

[13] G. Busca, V. Lorenzelli, G. Ramis, et al. Surface sites on spinel- type and corundum-type metal oxide powders. Langmuir, 1993, 9(6): 1492-1499.

[14] M. Schmücker, H. Schneider. A new approach on the coordina- tion of Al in non-crystalline gels and glasses of the system Al2O3-SiO2. Berichte der Bunsengesellschaft für Physikalische Chemie, 1996, 100(9): 1550-1553.

分享
Top