广东金马大桥多点非平稳随机激励下地震响应研究
Non-Stationary Random Excitations Seismic Response of Jinma Bridge in Guangdong

作者: 余报楚 :大连理工大学工业装备与结构分析国家重点实验室,大连、大连海洋大学,大连; 谢斌 :大连海洋大学,大连;

关键词: 独塔混凝土斜拉桥T构协作体系精细时程积分动空间效应非平稳随机激励The Concrete Cable-Stayed Bridge Tower T Shape Cooperative System Precise Time-Integration Method Dynamic Spatial Effect Non-Stationary Random Excitation

摘要:
以广东金马大桥的独塔混凝土斜拉桥与T构协作体系为工程算例,对协作体系桥在P波、SH波、SV波的激励下非平稳激励情况下的随机地震响应进行分析,在计算过程中并引入高效虚拟激励法和精细时程积分,计算了主梁、主塔的峰值响应包络,并对地震动空间效应对金马大桥这样的协作体系桥的地震反应影响规律作了讨论,方法高效计算结果的精度能满足工程要求,可以为同类工程所参考。

Abstract:
This paper takes Jinma Bridge in Guangdong with the concrete cable-stayed bridge tower and T shape sys- tem as an engineering example. Under P wave, SH wave, and SV wave excitations of random earthquake response, the girder and pylon peak response envelope of non-stationary excitation are mainly calculated by the efficient virtual excitation method and the precise time-integration method. This method is high efficient and the precision of the result meets require of engineering, which can be referred for similar engineering. In addition, the spatial variation of ground motion on the bridge with the cooperation system bridge under seismic response effect of regulations is discussed.

文章引用: 余报楚 , 谢斌 (2013) 广东金马大桥多点非平稳随机激励下地震响应研究。 土木工程, 2, 89-95. doi: 10.12677/HJCE.2013.22016

参考文献

[1] 范立础, 胡世德, 叶爱君. 大跨度桥梁抗震设计[M]. 北京: 人民交通出版社, 2001.

[2] 胡聿贤. 地震工程学[M]. 北京: 地震出版社, 1981.

[3] M. B. Priestley. Evolutionary spectra and non-stationary random process. Journal of the Royal Statistical Society. Series B, 1965, 28(2): 204-230.

[4] 林家浩. 非平稳随机地震响应的精确高效算法[J]. 地震工程与工程振动, 1993, 13(1): 24-29.

[5] 林家浩, 张亚辉. 随机振动的虚拟激励法[M]. 北京: 科学出版社, 2004.

[6] 张亚辉, 林家浩. 考虑频率及振幅非平稳性及行波效应时结构随机地震响应分析[J]. 计算力学学报, 1997, 1(14): 2-8.

[7] 钟万勰. 结构动力方程的精细时程积分方法[J]. 大连理工大学学报, 1994, 34(2): 131-136.

[8] 林家浩, 李建俊, 张文首. 结构受多点非平稳随机地震激励的响应[J]. 力学学报, 1995, 27(5): 567-576.

分享
Top