马朝晖
,
谭天亚
,
严清峰
,
李 强
(2012)
磁悬浮冷坩埚技术在特种金属功能材料制备中的应用。
材料科学,
2, 110-116. doi: 10.12677/MS.2012.23020
[1]
宋锋兵, 李强, 张一玲等. 提拉法制备马氏体NiAl合金的研究[J]. 武汉理工大学学报, 2001, 23(6): 14-17.
[2]
宋锋兵, 李强, 张一玲等. NiAl高温形状记忆合金的组分分析[J]. 材料科学与工艺, 2001, 9(43): 334-336.
[3]
孙大亮, 陈焕矗, 宋永远. 冷舟冷坩埚技术及其在单晶生长中的应用[J]. 人工晶体学报, 1990, 19(2): 172-176.
[4]
W. V. Bolton, O. Feuerlein. The tantalum lamp. Elektrotechnische Zeitschrift, 1905, 26: 105-109.
[5]
D. O. Muck. Verfahren und vrrichtung zum schmelzen, isbeson- dere vn litern u. dgl. Durch Elektrische Induktionsstroeme. Ger- man Patent, DE422004(C), 1925.
[6]
E. C. Okress, D. M. Wroughton. Electromagnetic levitation of solid and molten metals. Journal of Applied Physics, 1952, 23(5): 545-552.
[7]
Q. Li, Y. L. Zhang and R. Z. Yuan. Magnetic levitation cold crucible technique for pulling rare earth-iron monocrystal-avoid corrosion and pollution of crucible by molten material and provides high purity of product. Chinese Patent: CN1060318-A, 1992.
[8]
F. U. Bruckner, K. Schwerdtfeger. Single-crystal growth with the Czochralski method involving rotational electromagnetic stirring of the melt. Journal of Crystal Growth, 1994, 139(3-4): 351-356.
[9]
E. Fromm, H. Jehn. Electromagnetic forces and power absorp- tion in levitation melting. British Journal of Applied Physics, 1965, 16(5): 653-663.
[10]
L. M. Holmes. Stability of magnetic levitation. Journal of Applied Physics, 1978, 49(6): 3102-3109.
[11]
A. D. Sneyd, H. K. Moffatt. Fluid dynamical aspects of the levitation-melting process. Journal of Fluid Mechanics, 1982, 117(1): 45-70.
[12]
A. Bratz, I. Egry. Surface oscillations of electromagnetically levitated viscous metal droplets. Journal of Fluid Mechanics, 1995, 298: 341-359.
[13]
I. Egry, A. Diefenbach, W. Dreier and J. Piller. Containerless processing in space-thermophysical property measurements us- ing electromagnetic levitation. International Journal of Thermo- physics, 2001, 22(2): 569-578.
[14]
D. M. Herlach, R. F. Cochrane, I. Egry, et al. Containerless proc- essing in the study of metallic melts and their solidification. In- ternational Materials Reviews, 1993, 8(6): 273-347.
[15]
G. Lohofer. Force and torque of an electromagnetically levitated metal sphere. Quarterly of Applied Mathematics, 1993, 15(3): 495-581.
[16]
D. A. Hukin. Crucibles. US Patent: US3702368 (A), 1972.
[17]
韩至成. 电磁冶金技术及装备[M]. 北京: 冶金工业出版社2008: 368-384.
[18]
邓康, 任忠鸣, 陈坚强等. 冷坩埚磁悬浮熔炼的电磁场分析[J]. 计算物理, 2000, 17(6): 659-663.
[19]
黄劲松, 刘彬, 张伟等. 铸造TiAl合金微观组织的演变[J]. 中国有色金属学报, 2008, 18(4): 643-650.
[20]
A. Morita, H. Fukui, H. Tadano, et al. Alloying titanium and tantalum by cold crucible levitation melting (CCLM) furnace.Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2000, 280(1): 208-213.
[21]
D. M. Gordin, E. Delvat, R. Chelariu, et al. Characterization of Ti-Ta alloys synthesized by cold crucible levitation melting. Advanced Engineering Materials, 2008, 10(8): 714-719.
[22]
S. Voss, F. Stein, M. Palm, et al. Synthesis of defect-free sin- gle-phase bars of high-melting laves phases through modified cold crucible levitation melting. Materials Science and Engi- neering. Structural Materials Properties Microstructure and Proc- essing, 2010, 527(29-30): 7848-7853.
[23]
K. Matsugi, T. Endo, Y. B. Choi, et al. Alloy design of Ti alloys using ubiquitous elloying elements and characteristics of their levitation-melted alloys. Materials Transactions, 2010, 51(4): 740- 748.
[24]
K. Matsugi, H. Mamiya, Y. B. Choi, et al. Melting and solidifi- cation of TiNi alloys by cold crucible levitation method and evaluation of their characteristics. International Journal of Cast Metals Research, 2008, 21(1-4): 156-161.
[25]
周增林, 宋月清, 崔舜等. Nd 替代La 对La-Mg-Ni 系A2B7型贮氢电极合金性能的影响[J]. 中国有色金属学报, 2007, 17(1): 45-52.
[26]
李学军, 崔舜, 周增林等. La0.5Mg0.5(Ni1−xCox)2.28(x = 0.0 - 0.2)储氢合金的相结构和电化学性能[J]. 中国稀土学报, 2009, 27(4): 533-538.
[27]
覃铭, 熊凯, 蓝志强等. La0.7Pr0.15Nd0.05Mg0.3Ni3.3−xCo0.2Al0.1 (Co0.75Mn0.25)x(x = 0.0, 0.2, 0.4, 0.6)的电化学性能研究[J]. 中国稀土学报, 2011, 29(3): 351-359.
[28]
李强. 立方相大尺寸Tb-Dy-Fe超磁致伸缩单晶的制备研究与应用探索[D]. 武汉工业大学, 1993.
[29]
孙大亮, 蒋民华, 陈焕矗等. 冷坩埚技术研制新磁性Nd2Fe14B单晶体[J]. 科学通报, 1987, 14: 1071-1073.
[30]
S. B. Palmer, D. A. Hukin and C. Isci. Elastic and magnetic- properties of a single-crystal Gd-40percent Y alloy. Journal of Physics F-Metal Physics, 1977, 7(11): 2381-2392.
[31]
赵青, 张茂才, 邵东朗等. TbxDy1-xFe1.9 合金不同晶体方向的磁致伸缩应变[J]. 功能材料, 1999, 30(2): 41-43.
[32]
张一玲, 李强, 叶菁等. 磁悬浮冷坩埚晶体生长技术研究[J]. 材料科学与工程学报, 2000, 18(z1): 400-402.
[33]
Q. Li, Y. L. Zhang, R. Z. Yuan, et al. Growth of Tb0.27Dy0.73Fe2 magnetostrictive single crystals. Journal of Crystal Growth, 1993, 128(1-4): 1092-1094.
[34]
G. H. Wu, X. G. Zhao, J. H. Wang, et al. <111> Oriented and twin-free single crystals of Terfenol-D grown by Czochralski method with cold crucible. Progress in Natural Science, 1995, 5(6): 115-119.
[35]
J. L. Chen, S. X. Gao, W. H. Wang, et al. Single crystals of Tb0.3Dy0.7Fe2 grown by Czochralski method with cold crucible. Journal of Crystal Growth, 2002, 236(1-3): 305-310.
[36]
陈京兰, 王文洪, 余晨辉等. Heusler合金Ni52Mn24Ga24单晶生长和相变特性[J]. 人工晶体学报, 2000, S1: 25.
[37]
Y. T. Cui, W. L. Wang, K. J. Liao, et al. Field-controlled shape memory effect and temperature stability of the magnetic-field- induced strain in Ni52Mn16.4Fe8Ga23.6 single crystal. Rare Metal Materials and Engineering, 2005, 34(2): 266-270.
[38]
Y. T. Cui, Y. Ma, C. Y. Kong, et al. Large spontaneous shape memory and magnetic-field induced strain in Ni51Mn25.5Ga23.5 single crystal. Physica Status Solidi a-Applications and Materi- als Science, 2006, 203(10): 2532-2537.
[39]
武亮, 张健, 吴振兴等. Ni46Mn35Ga19单晶中磁转变和马氏体相变的物理表征及形状记忆效应[J]. 重庆师范大学学报, 2009, 26(4): 94-97
[40]
Y. L. Zhang, Q. Li, J. Ye, et al. Growth of NiAl shape memory alloy single crystals. Progress in Crystal Growth and Characterization of Materials, 2000, 40(1-4): 309-314.
[41]
宋锋兵, 张一玲, 李强等. 改善NiAl基高温形状记忆合金性能的初步探索[A]. 2000年材料科学与工程新进展(上)——2000年中国材料研讨会论文集[C]. 北京: 冶金工业出版社, 2000: 164-167.