理论数学

Vol.2 No.4 (October 2012)

一般测度Busemann-Petty问题的稳定性
Stability in the Busemann-Petty Problem for Arbitrary Measures

 

作者:

汪 卫 :湖南科技大学数学与计算科学学院

 

关键词:

Busemann-Petty问题星体凸体Radon变换The Busemann-Petty Problem Star Bodies Convex Bodies Radon Transform

 

摘要:

基于ZvavitchBusemann-Petty问题推广到了一般测度,本文利用Radon变换研究了一般测度Busemann-Petty问题的稳定性。作为应用,我们建立了n(n≤4)维空间中的一个关于一般测度的超截面不等式。这些结果与Koldobsky利用Fourier变换证明的结论是一致的。

Zvavitch found a generalization of the Busemann-Petty problem to arbitrary measures. In this paper, we study the stability in the Busemann-Petty problem for arbitrary measures by using Radon transform. As application, we obtain a hyperplane inequality for arbitrary measures in dimensions up to four. These results are consistent with Koldobsky’s results which are obtained by using Fourier transform.

文章引用:

汪 卫 (2012) 一般测度Busemann-Petty问题的稳定性。 理论数学, 2, 221-225. doi: 10.12677/PM.2012.24034

 

参考文献

分享
Top