理论数学

Vol.1 No.2 (July 2011)

耦合非线性抛物方程组的H1-Galerkin混合元方法
H1-Galerkin Mixed Element Method for the Coupling Nonlinear Parabolic Partial Equations

 

作者:

王金凤 , 刘洋 , 李宏 , 李晓瑜

 

关键词:

耦合非线性抛物方程组H1-Galerkin混合元方法向后欧拉方法最优阶误差估计 Coupling Nonlinear Parabolic Partial EquationsH1-Galerkin Mixed Element Method Backward Euler’s Method Optimal Error Estimates

 

摘要:

利用H1-Galerkin混合有限元方法讨论耦合非线性抛物方程组,得到一维情形的半离散和全离散格式和未知存量函数和它的梯度的最优收敛阶误差估计,而且不用验证LBB相容性条件。最后,通过数值例子验证了该算法的可行性。

An H1-Galerkin mixed finite element method is discussed for the coupling nonlinear parabolic partial equations. Semidiscrete and fully discrete schemes and optimal error estimates of the scalar unknown and its gradient are derived for problems in one space dimension, and it dose not require the LBB consistency condition. Finally, a numerical example is presented to illustrate the effectiveness of the proposed method.

文章引用:

王金凤 , 刘洋 , 李宏 , 李晓瑜 (2011) 耦合非线性抛物方程组的H1-Galerkin混合元方法。 理论数学, 1, 73-79. doi: 10.12677/pm.2011.12016

 

参考文献

分享
Top