材料科学

Vol.6 No.5 (September 2016)

生物医用Mg-4.0Zn-0.2Ca-1.0Gd合金的固溶工艺及其耐蚀性能研究
Investigation on Solid Solution Treatment and Corrosion Resistance of Mg-4.0Zn-0.2Ca-1.0Gd Alloy for Biomedical Application

 

作者:

唐昌平 , 宁汝斌 , 成声亮 :湖南科技大学机电工程学院,湖南 湘潭

 

关键词:

生物医用Mg-Zn-Ca合金固溶第二相耐蚀性能Biomedical Application Mg-Zn-Ca Alloy Solid Solution Second Phase Corrosion Resistance

 

摘要:

采用金相显微观察、硬度测试、扫描电镜观察、能谱仪、X射线衍射及电化学分析等手段,研究了Mg-4.0Zn-0.2Ca-1.0Gd合金在固溶过程中的组织与性能演变,结果表明:铸态合金主要由α-Mg基体和非平衡共晶组成,非平衡共晶包括Mg2Ca、Mg5.05Gd、MgZn及Ca2Mg6Zn3;经分级固溶处理后,非平衡共晶可基本溶入基体,较优的固溶处理工艺为320℃/6h + 400℃/6h + 500℃/6h;固溶态合金具有较优的耐蚀性能,在模拟体液和模拟海水中的自腐蚀电位分别为−1.578 V和−1.656 V。

Microstructure and property evolution of Mg-4.0Zn-0.2Ca-1.0Gd alloy during solution treatment were investigated using optical microscopy (OM), hardness testing, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction and electrochemical analysis. The results indicated that the microstructure of the as-cast alloy was comprised of α-Mg and non- equilibrium eutectics. The non-equilibrium eutectics contain the phases of Mg2Ca, Mg5.05Gd, MgZn and Ca2Mg6Zn3. These phases were able to dissolve into the matrix after progressive solid solution. The superior solid solution regime was determined to be 320˚C/6h + 400˚C/6h + 500˚C/6h. The corrosion resistance of the solution treated samples was relatively good. The corrosion potential for the samples in simulated body fluid and simulated sea water were −1.578 V and −1.656 V, re-spectively.

文章引用:

唐昌平 , 宁汝斌 , 成声亮 (2016) 生物医用Mg-4.0Zn-0.2Ca-1.0Gd合金的固溶工艺及其耐蚀性能研究。 材料科学, 6, 300-307. doi: 10.12677/MS.2016.65039

 

参考文献

分享
Top