无线通信

Vol.6 No.2 (April 2016)

基于m序列的压缩感知测量矩阵构造
Construction of Compressed Sensing Matrixs Based on m Sequences

 

作者:

李 明 , 江 桦 , 裴立业 :解放军信息工程大学信息系统工程学院,河南 郑州

 

关键词:

压缩感知测量矩阵m序列RIP列相关性Compressed Sensing Measurement Matrix m Sequences RIP Column Correlation

 

摘要:

测量矩阵作为压缩感知理论的核心内容,对信号的测量和重构会产生重大影响。本文主要基于m序列构造压缩感知测量矩阵。首先,给出一种压缩率为0.5的测量矩阵构造方法,利用该方法构造的测量矩阵元素取值集合较小,具有一定的循环特性。其次,结合有限域的理论,对利用m序列构造的测量矩阵做进一步改进,改进后测量矩阵的压缩率取值范围增大加。仿真结果表明:本文构造的测量矩阵的重构性能优于同大小的Gause测量矩阵,避免了随机性测量矩阵的不确定性,具有一定实用价值。

The measurement matrix as the core of the compressed sensing theory, will have a significant im-pact on the measurement and reconstruction. This paper produces a method of compressed sensing measurement matrix through the m sequences. First of all, it gives a method to construct the measurement matrix with compression rate is 0.5; this measurement matrix has small element set and certain cycle characteristics. Secondly, for combining the theory of finite fields, the measure-ment matrix based on m sequence is further improved. The compression rate of the matrix mea-surement range is greatly increased. The simulation results show that the measurement matrix is constructed in this paper which is better than Gause measurement matrix reconstruction perfor-mance of the same size, avoids the random measurement matrix uncertainty and has a certain practical value.

文章引用:

李 明 , 江 桦 , 裴立业 (2016) 基于m序列的压缩感知测量矩阵构造。 无线通信, 6, 52-60. doi: 10.12677/HJWC.2016.62008

 

参考文献

分享
Top