理论数学

Vol.6 No.1 (January 2016)

具有可变核的多线性积分算子在变指数Lebesgue空间的有界性
The Boundedness of Multilinear Fractional Integral Operators with Variable Kernel on Variable Exponent Lebesgue Spaces

 

作者:

万秋阅 :丽水学院工程与设计学院,浙江 丽水;浙江理工大学理学院,浙江 杭州

吴慧伶 , 兰家诚 :丽水学院工程与设计学院,浙江 丽水

 

关键词:

多线性分数次积分可变核变指数Lebesgue空间Multilinear Fractional Integral Variable Kernel Variable Exponent Lebesgue Spaces

 

摘要:

本文研究了具有可变核的多线性分数次积分算子和相对应的极大算子的有界性,通过多线性分数次积分与对应的分数次积分的联系,将多线性转化为较为简单的分数次积分,从而得到算子 上是有界的。

In this paper, the authors study the boundedness of a class of multilinear fractional integral and the maximal operators with variable kernel. Under some assumptions, it is obtained that these operators and are both bounded from to by using the connection between multilinear and fractional integral operators and converting multilinear into simple fractional integral.

文章引用:

万秋阅 , 吴慧伶 , 兰家诚 (2016) 具有可变核的多线性积分算子在变指数Lebesgue空间的有界性。 理论数学, 6, 72-80. doi: 10.12677/PM.2016.61011

 

参考文献

分享
Top