理论数学

Vol.6 No.1 (January 2016)

一类分数阶微分方程解的性质探讨
Exploration on the Nature of Solutions for a Differential Equation of Fractional Order

 

作者:

林诗游 :海南师范大学数学与统计学院,海南 海口

任 洁 :黎安初级中学,海南 陵水

 

关键词:

分数阶微分方程Caputo微分Schauder不动点定理压缩映象原理Differential Equation of Fractional Order Caputo Derivative Schauder Fixed Point Theorem Contraction Mapping Principle

 

摘要:

本文主要证明了一类分数阶非线性微分方程解的存在性和唯一性。文中用到的微分算子是Caputo分数阶微分算子。因这类方程的可解性是与一类Volterra型的积分方程的可解性等价,所以我们主要研究了与之等价的积分方程解的存在性和唯一性。我们通过Schauder不动点定理证明了积分方程解的存在性,用压缩映象原理证明了解的唯一性。

We prove existence and uniqueness of the solution of a nonlinear differential equation of fractional order. The differential operator is the Caputo fractional derivative. For the solvability of the equation is equivalent to a class of Volterra integral equation, we study the existence and uniqueness of the integral equation. We prove the existence of the solution of integral equation by Schau- der fixed point theorem and the uniqueness of the solution by contraction mapping principle.

文章引用:

林诗游 , 任 洁 (2016) 一类分数阶微分方程解的性质探讨。 理论数学, 6, 56-64. doi: 10.12677/PM.2016.61009

 

参考文献

分享
Top